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1. Introduction
In 1861, H. Hankel started the research on Hankel matrices. Since then, Han-
kel matrices play an important role in linear algebra and its applications. As a
natural extension of Hankel matrices, Hankel tensors arise from applications
such as signal processing.

Denote [n] := {1, · · · , n}. Let A = (ai1···im) be a real mth order n-dimensional
tensor. If there is a vector v = (v0, v1, · · · , v(n−1)m)> such that for i1, · · · , im ∈
[n], we have

ai1···im ≡ vi1+i2+···+im−m, (1)

then we say that A is an mth order Hankel tensor. Hankel tensors were in-
troduced by Papy, De Lathauwer and Van Huffel in 2005 in the context of the
harmonic retrieval problem, which is at the heart of many signal processing ap-
plications. In 2008, Badeau and Boyer proposed fast higher-order singular value
decomposition (HOSVD) for third order Hankel tensors.
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1.1. The Hankel Tensor Space

A real mth order n-dimensional tensor (hypermatrix) A = (ai1···im) is a multi-
array of real entries ai1···im, where ij ∈ [n] for j ∈ [m]. Denote the set of all
real mth order n-dimensional tensors by Tm,n. Then Tm,n is a linear space of
dimension nm. If the entries ai1···im are invariant under any permutation of their
indices, then A is a symmetric tensor. Denote the set of all real mth order n-
dimensional symmetric tensors by Sm,n. Then Sm,n is a linear subspace of Tm,n.
Clearly, a Hankel tensor is a symmetric tensor. Denote the set of all real mth
order n-dimensional Hankel tensors by Hm,n. Then Hm,n is a linear subspace of
Sm,n, with dimension (n− 1)m + 1.

Throughout this talk, we assume that m, n ≥ 2. We use small letters
x, u, v, α, · · · , for scalers, small bold letters x,y,u, · · · , for vectors, capital let-
ters A, B, · · · , for matrices, calligraphic letters A,B, · · · , for tensors. Denote
ei ∈ <n as the ith unit vector for i ∈ [n], and 0 as the zero vector in <n.
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1.2. Motivation

People used to think that tensor (hypermatrix) problems are hard while matrix
problems are tractable. This is only partially true. Actually, matrices are special
cases of tensors (hypermatrices) with order two. Thus, special tensor (hyper-
matrix) problems may be tractable if tensors (hypermatrices) in these problems
have simple structures. Since a Hankel tensor A is defined by a vector v, we
believe that the Hankel tensor problem is tractable. On the other hand, Hankel
tensors arise from applications, and Hankel matrices have a profound theory.
These three factors stimulated us to study Hankel tensors.

http://math.suda.edu.cn
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1.3. The Paper

This talk is based upon the following paper:

[1]. L. Qi, “Hankel tensors: Associated Hankel matrices and Vandermonde
decomposition”, October 2013. arXiv:1310.5470v2.
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1.4. Positive Semidefinite Tensors and Copositive Tensors

Let A = (ai1···im) ∈ Sm,n and x = (x1, · · · , xn)
> ∈ <n. Denote

Axm =
n∑

i1,··· ,im=1

ai1···imxi1 · · ·xim.

Denote <n
+ = {x ∈ <n : x ≥ 0}. If Axm ≥ 0 for all x ∈ <n

+, then A is
called copositive. If Axm > 0 for all x ∈ <n

+,x 6= 0, then A is called strongly
copositive. Suppose that m is even. If Axm ≥ 0 for all x ∈ <n, then A is
called positive semi-definite. If Axm > 0 for all x ∈ <n,x 6= 0, then A is
called positive definite. Positive semi-definite symmetric tensors are useful in
automatical control and higher-order diffusion tensor imaging. It is established
by Qi in 2005 that an even order symmetric tensor A ∈ Sm,n is positive semi-
definite if and only if all of its H-eigenvalues (or Z-eigenvalues) are nonnegative.
On the other hand, copositive tensors do not restrict the order to be even, thus are
more general. Nonnegative tensors, positive semi-definite tensors and Laplacian
tensors are copositive tensors.
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1.5. Copositive Hankel Tensors

We first give a necessary condition for a Hankel tensor to be copositive.

Proposition 1.1 Suppose that A ∈ Hm,n is defined by (1). If A is copositive,
then v(i−1)m ≥ 0 for i ∈ [n].

Proof. Since v(i−1)m = A(ei)
m for i ∈ [n], the conclusion follows from the

definition of copositive tensors. 2

As a positive semi-definite symmetric tensor is copositive, the condition of
Proposition 1.1 is also a necessary condition for an even order Hankel tensor
to be positive semi-definite.

http://math.suda.edu.cn


Introduction

Associated Plane Tensors

Generating Functions . . .

Vandermonde . . .

Spectral Properties of . . .

Bounds for the Largest . . .

Final Remarks

Home Page

Title Page

JJ II

J I

Page 9 of 37

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Associated Plane Tensors
For any nonnegative integer k, define s(k,m, n) as the number of distinct sets
of indices (i1, · · · , im) such that ij ∈ [n] for j ∈ [m] and i1 + · · ·+ im−m = k.
Then s(0, m, n) = 1, s(1, m, n) = m, s(2, m, n) = m(m+1)

2 , · · · .

We now definite the associated plane tensor of a Hankel tensor. Suppose that
A ∈ Hm,n is defined by (1). Define P = (pi1···i(n−1)m

) ∈ S(n−1)m,2 by

pi1···i(n−1)m
=

s(k,m, n)vk(
(n−1)m

k

) ,

where k = i1+ · · ·+i(n−1)m−(n−1)m. We call P the associated plane tensor
of A.

http://math.suda.edu.cn
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2.1. Theorem 2.1

Theorem 2.1 If a Hankel tensor A ∈ Hm,n is copositive, then its associated
plane tensor P is copositive. If an even order Hankel tensor A ∈ Hm,n is posi-
tive semi-definite, then its associated plane tensor P is positive semi-definite.

Proof. Suppose that A is copositive. By Proposition 1.1, v(n−1)m ≥ 0. Let
y = (y1, y2)

> ∈ <2
+. If y1 = y2 = 0, then clearly Py(n−1)m = 0. If y1 = 0 and

y2 6= 0, then Py(n−1)m = v(n−1)my
(n−1)m
2 ≥ 0. We now assume that y1 6= 0. Let

u = y2

y1
. Then u ≥ 0. We have

Py(n−1)m = y
(n−1)m
1

(n−1)m∑
k=0

(
(n− 1)m

k

)
· s(k, m, n)vk(

(n−1)m
k

) uk = y
(n−1)m
1 Aum ≥ 0,

(2)
where u = (1, u, u2, · · · , un−1)> ∈ <n

+. Thus, P is copositive.
Suppose that m is even and A is positive semi-definite. Then (n − 1)m is
also even. By Proposition 1.1, v(n−1)m ≥ 0. Let y = (y1, y2)

> ∈ <2. If
y1 = y2 = 0, then clearlyPy(n−1)m = 0. If y1 = 0 and y2 6= 0, thenPy(n−1)m =

v(n−1)my
(n−1)m
2 ≥ 0. We now assume that y1 6= 0. Let u = y2

y1
. Then u 6= 0.

The derivation (2) still holds with u = (1, u, u2, · · · , un−1)> ∈ <n. Thus, P is
positive semi-definite. 2
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2.2. Questions

We may use the methods in Qi, Wang and Wang (2009) to check if P is positive
semi-definite or not when m is even. In [1], we presented an algorithm for
checking if P is copositive or not.

Can we give an example that P is copositive but A is not? When m is even,
can we give an example that P is positive semi-definite but A is not? Which
conditions on P may assure co-positiveness or positive semi-definiteness of A?

http://math.suda.edu.cn
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3. Generating Functions and Strong Hankel
Tensors

Suppose that A ∈ Hm,n is defined by (1). Let A = (aij) be an d(n−1)m+2
2 e ×

d(n−1)m+2
2 e matrix with aij ≡ vi+j−2, where v2d (n−1)m

2 e is an additional number
when (n − 1)m is odd. Then A is a Hankel matrix, associated with the Hankel
tensor A. Such an associated Hankel matrix is unique if (n − 1)m is even. If
the Hankel matrix A is positive semi-definite, then we say that A is a strong
Hankel tensor.

http://math.suda.edu.cn
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3.1. A Generating Function

Let A be a Hankel tensor defined by (1). Let f(t) be an absolutely integrable
real valued function on the real line (−∞,∞) such that

vk ≡
∫ ∞

−∞
tkf(t)dt, (3)

for k = 0, · · · , (n − 1)m. Then we say that f is a generating function of
the Hankel tensor A. We see that f(t) is also the generating function of the
associated Hankel matrix of A. By the theory of Hankel matrices, f(t) is well-
defined.

http://math.suda.edu.cn
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3.2. Theorem 3.1

Theorem 3.1 A Hankel tensor A has a nonnegative generating function if and
only if it is a strong Hankel tensor. An even order strong Hankel tensor is posi-
tive semi-definite.
On the other hand, suppose that A ∈ Hm,n has a generating function f(t) such
that (3) holds. If A is copositive, then∫ ∞

−∞
t(i−1)mf(t)dt ≥ 0

for i ∈ [n].

http://math.suda.edu.cn
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3.3. Proof

Proof. By the famous Hamburger moment problem, such a nonnegative gen-
erating function exists if and only if the associated Hankel matrix is positive
semi-definite, i.e., A is a strong Hankel tensor. On the other hand, suppose that
A has such a nonnegative generating function f and m is even. Then for any
x ∈ <n, we have

Axm =
n∑

i1,··· ,im=1

ai1···imxi1 · · ·xim

=
n∑

i1,··· ,im=1

∫ ∞

−∞
ti1+···+im−mxi1 · · ·ximf(t)dt

=

∫ ∞

−∞

(
n∑

i=1

xit
i−1

)m

f(t)dt

≥ 0.

Thus, if m is even and A is a strong Hankel tensor, then A is positive semi-
definite.
The final conclusion follows from (3) and Proposition 1.1. 2
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3.4. A Counter Example

We now give an example of a positive semi-definite Hankel tensor, which is not
a strong Hankel tensor. Let m = 4 and n = 2. Let v0 = v4 = 1, v2 = −1

6, and
v1 = v3 = 0. Let A be defined by (1). Then for any x ∈ <2, we have

Ax4 = v0x
4
1 + 4v1x

3
1v2 + 6v2x

2
1x

2
2 + 4v3x1x

3
2 + v4x

4
2 = x4

1 − x2
1x

2
2 + x4

2 ≥ 0.

Thus, A is positive semi-definite. Let A be the unique Hankel matrix associated
with A. Since v2 < 0, by Proposition 1.1, A is not positive semi-definite. Thus,
A is not a strong Hankel tensor.
The question is, for a fixed even number m ≥ 4, can we characterize a posi-
tive semi-definite Hankel tensor by its generating functions? If the associated
Hankel matrix is copositive, is the Hankel tensor copositive?

http://math.suda.edu.cn
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3.5. Hadamard Product

We now discuss the Hadamard product of two strong Hankel tensors. Let A =
(ai1···im),B = (bi1···im) ∈ Tm,n. Define the Hadamard product of A and B as
A ◦ B = (ai1···imbi1···im) ∈ Tm,n. Clearly, the Hadamard product of two Hankel
tensors is a Hankel tensor.

Proposition 3.1 The Hadamard product of two strong Hankel tensors is a strong
Hankel tensor.

Proof. Let A and B be two strong Hankel tensors in Hm,n. Let A and B be
Hankel matrices associated with A and B respectively, such that A and B are
positive semi-definite. Clearly, the Hadamard product of A and B is a Hankel
matrix associated with the Hadamard product of A and B. By the Shur product
theorem, the Hadamard product of two positive semi-definite symmetric ma-
trices is still a positive semi-definite symmetric matrix. Thus, the Hadamard
product of A and B is positive semi-definite. This implies that the Hadamard
product of A and B is a strong Hankel tensor. 2
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3.6. A Counter Example

On the other hand, the Hadamard product of two positive semi-definite Hankel
tensors may not be positive semi-definite. Assume that m = 4 and n = 2.
Let A be the example given above. Then A is a positive semi-definite Hankel
tensor. On the other hand, let B = (bi1i2i3i4) ∈ S4,2 be defined by bi1i2i3i4 = 1
if i1 + i2 + i3 + i4 = 6, and bi1i2i3i4 = 0 otherwise. We may verify that B is a
strong Hankel tensor, thus a positive semi-definite Hankel tensor. It is easy to
verify that A ◦ B is not positive semi-definite. Note here that A is not a strong
Hankel tensor. Thus, this example does not contradict Proposition 3.1.
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4. Vandermonde Decomposition and Complete
Hankel Tensors

For any vector u ∈ <n, um is a rank-one mth order symmetric n-dimensional
tensor um = (ui1 · · ·uim) ∈ Sm,n. If u = (1, u, u2, · · · , un−1)>, then u is called
a Vandermonde vector. If

A =
r∑

k=1

αk (uk)
m , (4)

where αk ∈ <, αk 6= 0, uk = (1, uk, u
2
k, · · · , un−1

k )> ∈ <n are Vandermonde
vectors for k = 1, · · · , r, and ui 6= uj for i 6= j, then we say that tensor
A has a Vandermonde decomposition. We call the minimum value of r the
Vandermonde rank of A.

http://math.suda.edu.cn
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4.1. Theorem 4.1

Theorem 4.1 Let A ∈ Sm,n. Then A is a Hankel tensor if and only if it has a
Vandermonde decomposition (4). In this case, we have r ≤ (n− 1)m + 1.
Suppose that A has a Vandermonde decomposition (4). If A is copositive, then

r∑
k=1

αku
(i−1)n
k ≥ 0, for i ∈ [n]. (5)

On the other other hand, if m is even and αk > 0 for i ∈ [r], then A is positive
semi-definite.

http://math.suda.edu.cn
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4.2. Proof

Proof. Suppose that A has a Vandermonde decomposition (4). Let

vi =
r∑

k=1

αku
i
k, for i = 0, · · · , (m− 1)n. (6)

By (4), we see that (1) holds. Thus, A is a Hankel tensor.
On the other hand, assume that A is a Hankel tensor defined by (1). Let r =
(m − 1)n + 1. Pick real numbers uk, k ∈ [r] such that ui 6= uj for i 6= j. By
matrix analysis, the coefficient matrix of the linear system (6) with αk, k ∈ [r]
as variables, is a Vandermonde matrix, which is nonsingular. Thus, the linear
system (6) has a solution αk, k ∈ [r]. Substituting such αk, k = 1, · · · , r to (4),
we see that (4) holds, i.e., A has a Vandermonde decomposition.
Suppose that A has a Vandermonde decomposition (4). If A is copositive, then
(5) follows from (6) and Proposition 1.1. On the other hand, assume that m is
even. Suppose (4) holds with αk > 0, k ∈ [r]. For any x ∈ <n, we have

Axm =
r∑

k=1

αk(u
>
k x)m ≥ 0.

Thus, A is positive semi-definite. 2
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4.3. Complete Hankel Tensors

In (4), if αk > 0, k ∈ [r], then we say that A has a positive Vandermonde
decomposition and call A a complete Hankel Tensor. Thus, Theorem 4.1 says
that an even order complete Hankel tensor is positive semi-definite. We will
study the spectral properties of odd order complete Hankel tensors in the next
section.
By (6), if αk > 0 for k ∈ [r], then vi is nonnegative if i is even. Thus, the
counterexample A, given in the last section, is not a complete Hankel tensor as
it has v2 < 0. This implies that a positive semi-definite Hankel tensor may not
be a complete Hankel tensor.
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4.4. Hadamard Product

Proposition 4.1 The Hadamard product of two complete Hankel tensors is a
complete Hankel tensor.

Proof. Suppose that A,B ∈ Hm,n are two complete Hankel tensors. Then we
may assume that each of A and B has a positive Vandermonde decomposition:

A =
r∑

k=1

αk (uk)
m

and

B =
s∑

j=1

βj (vj)
m ,

where αk > 0,uk = (1, uk, u
2
k, · · · , un−1

k )> are Vandermonde vectors for k ∈
[r], βj > 0,vj = (1, vj, v

2
j , · · · , vn−1

j )> are Vandermonde vectors for j ∈ [s].
Then the Vandermonde product of A and B is

A ◦ B =
r∑

k=1

s∑
j=1

αkβj (wkj)
> ,

where αkβj > 0,wkj = (1, ukvj, (ukvj)
2, · · · , (ukvj)

n−1)> are Vandermonde
vectors for k ∈ [r] and j ∈ [s]. We see that A ◦ B has a positive Vandermonde
decomposition, thus a complete Hankel tensor. 2
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4.5. Summary

We may summarize the results on Hadamard products. The Hadarmard product
of two Hankel tensors is a Hankel tensor. The Hadarmard product of two strong
Hankel tensors is a strong Hankel tensor. The Hadarmard product of two com-
plete Hankel tensors is a complete Hankel tensor. But the Hadarmard product
of two positive semi-definite Hankel tensors may not be positive semi-definite.

Can we characterize a positive semi-definite Hankel tensor by its Vandermonde
decomposition? Is a strong Hankel tensor a complete Hankel tensor? Is a com-
plete Hankel tensor a strong Hankel tensor?
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5. Spectral Properties of Odd Order Hankel
Tensors

Suppose that m is even. Then by Theorem 5 of Qi (2005), all the H-eigenvalues
and Z-eigenvalues of a strong Hankel tensor or a complete Hankel tensor are
nonnegative, as strong Hankel tensors and complete Hankel tensors are positive
semi-definite. In this section, we discuss spectral properties of odd order com-
plete and strong Hankel tensors. Hence, assume that m is odd in this section.
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5.1. Eigenvalues and Eigenvectors

We now briefly review the definition of eigenvalues, H-eigenvalues E-
eigenvalues and Z-eigenvalues of a real mth order n-dimensional symmetric
tensor A = (ai1···im) ∈ Sm,n. Let x = (x1, · · · , xn)

> ∈ Cn. Then Axm−1 is an
n-dimensional vector, with its ith component as

∑n
i2···im=1 aii2···imxi2 · · ·xim. For

any vector x ∈ Cn, x[m−1] is a vector in Cn, with its ith component as xm−1
i . If

Axm−1 = λx[m−1] for some λ ∈ C and x ∈ Cn \ {0}, then λ is called an eigen-
value of A and x is called an eigenvector of A, associated with λ. If both λ and
x are real, then they are called an H-eigenvalue and an H-eigenvector of A,
respectively. If Axm−1 = λx for some λ ∈ C and x ∈ Cn, satisfying x>x = 1,
then λ is called an E-eigenvalue of A and x is called an E-eigenvector of A,
associated with λ. If both λ and x are real, then they are called a Z-eigenvalue
and a Z-eigenvector of A, respectively. Note that Z-eigenvalues always exist,
and when m is even, H-eigenvalues always exist.
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5.2. H-Eigenvalues of Complete Hankel Tensors

Proposition 5.1 Suppose that m is odd and A ∈ Hm,n is a complete Hankel
tensor. Assume thatA has at least one H-eigenvalue. Then all the H-eigenvalues
of A are nonnegative. Let λ be an H-eigenvalue of A, with an H-eigenvector
x = (x1, · · · , xn)

>. Then either λ = 0 or λ > 0 with x1 6= 0.

Proof. By the definition of complete Hankel tensors, A has a Vandermonde
decomposition (4), with αk > 0 for k ∈ [r]. Suppose thatA has an H-eigenvalue
λ associated with an H-eigenvector x = (x1, · · · , xn)

>. Then for i ∈ [n], we
have

λxm−1
i =

(
Axm−1)

i
=

r∑
k=1

αku
i−1
k

[
(uk)

>x
]m−1

. (7)

If (uk)
>x = 0 for all k ∈ [r], then the right hand side of (7) is 0. Since x 6= 0,

we may pick i such that xi 6= 0. Then (7) implies that λ = 0.
Suppose that (uk)

>x 6= 0 for at least one k. Let i = 1. Then the the right hand
side of (7) is positive. This implies that λ > 0 and x1 6= 0. 2

In general an odd order symmetric tensor may not have H-eigenvalues. Does a
complete Hankel tensor always have an H-eigenvalue?
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5.3. Z-Eigenvalues of Complete Hankel Tensors

Proposition 5.2 Suppose that m is odd and x = (x1, · · · , xn)
> is a Z-

eigenvector of a complete Hankel tensor A ∈ Hm,n, associated with a Z-
eigenvalue λ. Then xi ≥ 0 for all odd i and x1 > 0 if λ > 0; and xi ≤ 0
for all odd i and x1 < 0 if λ < 0.

Proof. Again, by the definition of complete Hankel tensors, A has a Vander-
monde decomposition (4), with αk > 0 for k ∈ [r]. Suppose that A has a
Z-eigenvalue λ associated with a Z-eigenvector x = (x1, · · · , xn)

>. Then for
i ∈ [n], we have

λxi =
(
Axm−1)

i
=

r∑
k=1

αku
i−1
k

[
(uk)

>x
]m−1

. (8)

If (uk)
>x = 0 for all k ∈ [r], then the right hand side of (8) is 0. Since x 6= 0,

we may pick i such that xi 6= 0. Then (8) implies that λ = 0.
Suppose that (uk)

>x 6= 0 for at least one k. Let i be odd. Then the the right
hand side of (8) is nonnegative. This implies that λxi ≥ 0. The conclusion on
xi with i odd follows. Let i = 1. Then the the right hand side of (8) is positive.
This implies that λx1 > 0. The conclusion on x1 follows now. 2
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5.4. Z-Eigenvalues of Strong Hankel Tensors

Proposition 5.3 Suppose that m is odd and x = (x1, · · · , xn)
> is a Z-

eigenvector of a strong Hankel tensorA ∈ Hm,n, associated with a Z-eigenvalue
λ. Then xi ≥ 0 for all odd i if λ > 0; and xi ≤ 0 for all odd i if λ < 0.

Proof. By Theorem 1, A has a nonnegative generating function f(t) such that
(3) holds. Suppose that A has a Z-eigenvalue λ associated with a Z-eigenvector
x = (x1, · · · , xn)

>. Then for i ∈ [n], we have

λxi =
(
Axm−1)

i

=
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim

=
n∑

i2,··· ,im=1

∫ ∞

−∞
ti+i2+···+im−mxi1 · · ·ximf(t)dt

=

∫ ∞

−∞
ti−1

(
n∑

i=1

xit
i−1

)m−1

f(t)dt. (9)

Let i be odd. Then the the right hand side of (9) is nonnegative. The conclusion
follows now. 2
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5.5. Odd Order Positive Semi-Definite Tensors

Note that we miss a result of the H-eigenvalues of an odd order strong Hankel
tensor. Are all the H-eigenvalues of an odd order strong Hankel tensor nonneg-
ative?

Similar spectral properties hold for odd order Laplacian tensors and odd order
completely positive tensors. A common point is that such classes of symmetric
tensors are positive semi-definite when the order is even. Thus, we may think if
we may define some odd order “positive semi-definite” symmetric tensors, with
such spectral properties. Further study is needed on such a phenomenon.
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6. Bounds for the Largest and the Smallest Z-
Eigenvalues

Let A ∈ Sm,n. Then A always has Z-eigenvalues. Denote the smallest and
the largest Z-eigenvalue of A by λmin(A) and λmax(A) respectively. We always
have

λmin(A) = min{Axm : x ∈ <n,x>x = 1} (10)

and
λmax(A) = max{Axm : x ∈ <n,x>x = 1}. (11)

If m is even, A is positive semi-definite if and only if λmin(A) ≥ 0. If
m is odd, then λmax(A) ≥ 0 and λmin(A) = −λmax(A). In general,
max{|λmin(A)|, |λmax(A)|} is a norm of A in the space Sm,n. If |λmin(A)| =
max{|λmin(A)|, |λmax(A)|}, then λmin(A) and its corresponding eigenvector
x form the best rank-one approximation to A. Similarly, if |λmax(A)| =
max{|λmin(A)|, |λmax(A)|}, then λmax(A) and its corresponding eigenvector x
form the best rank-one approximation to A. Let x ∈ <n,x 6= 0. By (10) and
(11), we have

λmin(A) ≤ Axm

‖x‖m
2
≤ λmax(A). (12)
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6.1. Bounds

Proposition 6.1 Suppose that A ∈ Hm,n. Then

λmin(A) ≤ min
i∈[n]

v(i−1)m ≤ max
i∈[n]

v(i−1)m ≤ λmax(A).

Proof. Since v(i−1)m = A(ei)
m for i ∈ [n], the conclusion follows from (12).

2.
Suppose P is the associated plane tensor of A. We now use λmin(P) and
λmax(P) to give an upper bound for λmin(A), and a lower bound for λmax(A),
respectively.

Proposition 6.2 Suppose that A ∈ Hm,n, and P is the associated plane tensor
of A. Assume that m(n − 1) is even. If y = (y1, y2)

> is a Z-eigenvector of P ,
associated with λmin(P)√√√√(n−1)m∑

j=0

y
2(n−1)m−2j
1 y2j

2 λmin(A) ≤ λmin(P). (13)

If z = (z1, z2)
> is a Z-eigenvector of P , associated with λmax(P)√√√√(n−1)m∑

j=0

z
2(n−1)m−2j
1 z2j

2 λmax(A) ≥ λmax(P). (14)
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6.2. Proof

Proof. If y1 = 0, since y2
1 + y2

2 = 1, then√√√√(n−1)m∑
j=0

y
2(n−1)m−2j
1 y2j

2 = 1.

We have

λmin(P) = Py(n−1)m = v(n−1)m ≥ λmin(A) =

√√√√(n−1)m∑
j=0

y
2(n−1)m−2j
1 y2j

2 λmin(A),

where the inequality is due to Proposition 6.1. Thus, (13) holds.
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Suppose that y1 6= 0. Let u = y2

y1
and u = (1, u, u2, · · · , un−1)> ∈ <n. Then

λmin(P) = Py(n−1)m

= y
(n−1)m
1

(n−1)m∑
k=0

(
(n− 1)m

k

)
· sk,mvk(

(n−1)m
k

)uk

=
∣∣∣y(n−1)m

1

∣∣∣Aum

=
∣∣∣y(n−1)m

1

∣∣∣ ‖u‖m
2
Aum

‖u‖m
2

=

√√√√(n−1)m∑
j=0

y
2(n−1)m−2j
1 y2j

2
Aum

‖u‖m
2

≥

√√√√(n−1)m∑
j=0

y
2(n−1)m−2j
1 y2j

2 λmin(A),

where the inequality is due to (12). Thus, (13) also holds in this case. This
proves (13).
We may prove (14) similarly. 2
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6.3. Question

Suppose that a Hankel tensor A is associated with a Hankel matrix A. Can we
use the largest and the smallest eigenvalues of A to bound the largest and the
smallest H-eigenvalues (Z-eigenvalues) of A?
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7. Final Remarks
In this talk, we make an initial study on Hankel tensors. We see that Hankel
tensors have a very special structure, hence have very special properties. We
associate a Hankel tensor with a Hankel matrix, a symmetric plane tensor, gen-
erating functions and Vandermonde decompositions. They will be useful tools
for further study on Hankel tensors.

Some questions have already been raised. Here are some further questions.

1. Badeau and Boyer (2008) proposed fast higher-order singular value decompo-
sition (HOSVD) for third order Hankel tensors. Can we construct some efficient
algorithms for the largest and the smallest H-eigenvalues (Z-eigenvalues) of a
Hankel tensor, or a strong Hankel tensor, or a complete Hankel tensor?

2. In general, it is NP-hard to compute the largest and the smallest H-eigenvalues
(Z-eigenvalues) of a symmetric tensor. What is the complexity for computing
the smallest H-eigenvalues (Z-eigenvalues) of a Hankel tensor, a strong Hankel
tensor, and a complete Hankel tensor?
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7.1. More Questions

3. Proposition 8 of Qi (2005) says that the determinants of all the principal
symmetric sub-tensors of a positive semi-definite tensor are nonnegative. The
converse is not true in general. Is the converse of Proposition 8 of Qi (2005) true
for Hankel tensors?

4. The theory of Hankel matrices is based upon finite and infinite Hankel ma-
trices as well as Hankel operators. Should we also study infinite Hankel tensors
and multi-linear Hankel operators?
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